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A fully neutralized beam that drift-compresses as it propagates in the z direction is considered.
Simple expressions are derived for the time at which the beam has minimal spatial extent, and
for the z position at which it has minimal duration. A sample implementation (in the Python
programming language), and output from a typical application, are presented.

Time of minimal pulse length

At any time t0 once the beam is fully neutralized, it is possible to compute the time tm of peak
spatial compression (when the beam has its minimal RMS spatial length zrms,m). One can then
compute, for the beam at time tm, a number of quantities of interest. These include zrms,m; the
“plane of shortest beam” z = zm, which is the mean z of the particles; and the RMS pulse duration
τrms,m through that plane (or some other measure of duration through that plane). We consider N
particles, each particle i having its peculiar position zi0 and fixed velocity vi at t = t0. The output
quantities that are likely to be of greatest interest are given by numbered equations. At any time,

zrms =

[∑
i(zi − z̄)2

N

]1/2

and
dzrms

dt
=

1

zrmsN

∑
i

(zi − z̄)(vi − v̄) =
1

zrmsN

∑
i

zi(vi − v̄) .

The shortest length is achieved at the time when this derivative is zero:∑
i

zi(vi − v̄) = 0 .

The vi are constant, so the zi at any time can be computed from the starting values {zi0}:

zi = zi0 + vi(t− t0) ,

so that the condition for shortest length becomes:∑
i

(zi0 + vi(tm − t0))(vi − v̄) = 0 ,

or ∑
i

zi0(vi − v̄) = −(tm − t0)
∑

i

vi(vi − v̄) .

Thus the required time shift τm = tm − t0 is given by

τm = −
∑

i zi0(vi − v̄)∑
i vi(vi − v̄)

, (1)
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and we have:
tm = t0 + τm , (2)

zm = z̄0 + v̄τm , (3)

and

zrms,m =

[∑
i(zi0 + viτm − zm)2

N

]1/2

. (4)

The travel time of particle i to zm is (zm − zi0)/vi, so that the mean travel time is:

τ̄m =

∑
i (zm − zi0)/vi

N
,

and the RMS travel time (pulse duration) is:

τrms,m =

[∑
i[(zm − zi0)/vi − τ̄m]2

N

]1/2

. (5)

Axial location of minimal pulse duration

A similar calculation yields the plane zd of true minimal pulse duration τrms,d; typically zd will vary
only slightly from zm as computed above, and τrms,d should be quite close to τrms,m.

At any axial station z, the travel time τi of particle i is:

τi =
z − zi0

vi

,

with mean travel time
τ̄ =

∑
i

τi/N ,

and RMS travel time (pulse duration)

τrms =

[∑
i(τi − τ̄)2

N

]1/2

.

The derivative is:
dτrms

dz
=

1

τrmsN

∑
i

(τi − τ̄)(τ ′i − τ̄ ′)

where

τ ′i =
dτi

dz
=

1

vi

.

The derivative becomes:
dτrms

dz
=

1

τrmsN

∑
i

(τi − τ̄)(v−1
i − v−1) ,

and the condition for minimal pulse duration is:∑
i

τi(v
−1
i − v−1) = 0 ,
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or ∑
i

z − zi0

vi

(v−1
i − v−1) = 0 .

The value of z for which this condition obtains, zd, is given by:

zd

∑
i

(v−2
i − v−1

i v−1) =
∑

i

zi0(v
−2
i − v−1

i v−1) ,

or

zd =

∑
i zi0(v

−2
i − v−1

i v−1)∑
i(v

−2
i − v−1

i v−1)
. (6)

The mean time shift from t0 for particle arrival at z = zd is:

τd =
1

N

∑
i

zd − zi0

vi

, (7)

and the mean arrival time at that plane is:

td = t0 + τd . (8)

The RMS arrival time is:

τrms,d =

[∑
i[(zd − zi0)/vi − τd]

2

N

]1/2

. (9)

The mean particle position at time td is:

z̄d =

∑
i[zi0 + viτd]

N
,

with RMS:

zrms,d =

[∑
i[zi0 + viτd − z̄d]

2

N

]1/2

. (10)
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Python-language implementation, and output

The np particle positions are in the array zp, and their velocities in vp.

# --- instantaneous moments

zbar = sum(zp)/np

vbar = sum(vp)/np

zrms = sqrt(sum((zp-zbar)**2)/np)

taurmscrude = zrms/vbar

taubar = sum((zp-zbar)/vp)/np

taurms = sqrt(sum(((zp-zbar)/vp-taubar)**2)/np)

print ’ ’;print ’instantaneous moments’

print ’t =’,t

print ’zbar =’,zbar

print ’vbar =’,vbar

print ’zrms =’,zrms

print ’taubar =’,taubar

print ’taurmscrude =’,taurmscrude

print ’taurms =’,taurms

# --- at time of minimal pulse length

taum = - sum(zp*(vp-vbar))/sum(vp*(vp-vbar))

tm = t + taum

zm = zbar + vbar*(tm-t)

zrmsm = sqrt(sum((zp+vp*(tm-t)-zm)**2)/np)

taubarm = sum((zm-zp)/vp)/np

taurmsm = sqrt(sum(((zm-zp)/vp-taubarm)**2)/np)

print ’ ’;print ’at time of minimal pulse length’

print ’taum =’,taum

print ’tm =’,tm

print ’zm =’,zm

print ’taurmsm =’,taurmsm

print ’zrmsm =’,zrmsm

print ’taubarm =’,taubarm

# --- at z of minimal pulse duration

vpinvbar = sum(1./vp)/np

zd = sum(zp*(1./vp**2-vpinvbar/vp))/sum(1./vp**2-vpinvbar/vp)

taud = sum((zd-zp)/vp)/np

td = t + taud

taurmsd = sqrt(sum(((zd-zp)/vp-taud)**2)/np)

zbard = sum(zp+vp*taud)/np

zrmsd = sqrt(sum((zp+vp*(td-t)-zbard)**2)/np)

print ’ ’;print ’at z of minimal pulse duration’

print ’taud =’,taud

print ’td =’,td

print ’zd =’,zd

print ’taurmsd =’,taurmsd

print ’zrmsd =’,zrmsd

print ’zbard =’,zbard
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Using particle positions and velocities from a 1-D test code, which had been advanced to a time
slightly past peak compression, the following output was obtained. Note that τm, τd < 0 in this
case. As can clearly be seen, the two formulations yield very similar results.

instantaneous moments

t = 3.798e-06

zbar = 16.1792849226

vbar = 9727761.89018

zrms = 0.0128757423499

taubar = -1.16579114943e-11

taurmscrude = 1.32360788589e-09

taurms = 1.30433323629e-09

at time of minimal pulse length

taum = -5.33558428714e-08

tm = 3.74464415713e-06

zm = 15.6602519877

taurmsm = 1.04641894803e-09

zrmsm = 0.0103180309813

taubarm = -5.33559510509e-08

at z of minimal pulse duration

taud = -5.23948308449e-08

td = 3.74560516916e-06

zd = 15.6695994749

taurmsd = 1.0463214719e-09

zrmsd = 0.0103189635271

zbard = 15.6696004839

Discussion

If the beam is not perfectly neutralized, these calculations might still yield good estimates if applied
slightly upstream of best longitudinal focus; the instantaneous zrms and/or τrms might be monitored,
and as they start to level off the calculation carried out. In such a case this might provide useful
guidance for when a simulation “snapshot” of the maximally compressed beam might be taken,
and/or at what plane the target might optimally be placed.
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